Proper Toric Maps Over Finite Fields

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linearized polynomial maps over finite fields

We consider polynomial maps described by so-called (multivariate) linearized polynomials. These polynomials are defined using a fixed prime power, say q. Linearized polynomials have no mixed terms. Considering invertible polynomial maps without mixed terms over a characteristic zero field, we will only obtain (up to a linear transformation of the variables) triangular maps, which are the most b...

متن کامل

Classical Wavelet Transforms over Finite Fields

This article introduces a systematic study for computational aspects of classical wavelet transforms over finite fields using tools from computational harmonic analysis and also theoretical linear algebra. We present a concrete formulation for the Frobenius norm of the classical wavelet transforms over finite fields. It is shown that each vector defined over a finite field can be represented as...

متن کامل

Classical wavelet systems over finite fields

This article presents an analytic approach to study admissibility conditions related to classical full wavelet systems over finite fields using tools from computational harmonic analysis and theoretical linear algebra. It is shown that for a large class of non-zero window signals (wavelets), the generated classical full wavelet systems constitute a frame whose canonical dual are classical full ...

متن کامل

On the Dispersions of the Polynomial Maps over Finite Fields

We investigate the distributions of the different possible values of polynomial maps Fq n −→ Fq , x 7−→ P (x) . In particular, we are interested in the distribution of their zeros, which are somehow dispersed over the whole domain Fq n . We show that if U is a “not too small” subspace of Fq n (as a vector space over the prime field Fp ), then the derived maps Fq /U −→ Fq , x + U 7−→ ∑ x̃∈x+U P (...

متن کامل

Extending Self-maps to Projective Space over Finite Fields

Using the closed point sieve, we extend to finite fields the following theorem proved by A. Bhatnagar and L. Szpiro over infinite fields: if X is a closed subscheme of P over a field, and φ : X → X satisfies φOX(1) ' OX(d) for some d ≥ 2, then there exists r ≥ 1 such that φ extends to a morphism P → P.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2015

ISSN: 1073-7928,1687-0247

DOI: 10.1093/imrn/rnv094